В телах, "подобных" друг другу (то есть, когда одно получается из другого пропорциональным изменением масштабов), объём пропорционален кубу линейного размера.
Поэтому объем малого и большого конусов относятся, как (r/R)^3, а объем усеченного конуса составляет 1-(r/R)^3 от объема большого (у которого в основании R>r)
На самом деле, в этом очевидном решении легко навести "строгость".
Высоты малого и большого конусов пропорциональны радиусам, а площади - квадратам радиусов. Поэтому объем пропорционален радиусу в кубе.
Отложим на перпендикулярах отрезки
Точка О - центр ABC, т.е. точка пересечения его медиан. Медиана правильного треугольника ABC делится точкой O в соотношении AO:OD = 2:1, откуда AO:AD = 2:3
Опустим из точки D перпендикуляр на плоскость в точку
Отрезок
Треугольники
Тогда
Учитывая вышеизложенное, получаем
ответ: 14 дм.