Противоположные углы у параллелограмма равны. Если два угла, прилежащие к одной стороне равны, то и остальные 2 угла равны. А параллелограмм с равными углами - прямоугольник
Эти хорды будут параллельны. если от центра провести прямые к точкам C и D то получится равнобедренный треугольник. нам нужно найти высоту проведенную к основанию CD. обратимся к другому треугольнику. делаем аналогично, т.е. получается тот же равнобедренный треугольник. расстояние от центра окружности до хорды АВ равно 12. Получается прямоугольный треугольник. По теореме Пифагора находим гипотенузу (от центра до точки А): 9^2+12^2=225 (9-потому что высота делит сторону пополам, следовательно 18:2=9), а значит сторона равна 15. Эта сторона будет являться радиусом. АС диаметр, значит сторона от центра до точки С тоже 15. Опять обратимся к теореме Пифагора: 15^2=х^2+12^2 (12-потому что высота делит пополам, следовательно 24:2=12) 225=х^2+144 x^2=81 x=9 ответ: 9
Обозначим (начиная с нижнего левого острого угла) по часовой стрелке ABCD. Тогда AD = 12 см и AB=8 см Высоты из угла В - на AD - BE и на CD - BF <EBF = 60 BE - высота, т. е. BE перпендикулярно AD, значит BD перпендикулярно и BC, т.к. BC параллельно AD, следовательно, < CBE - прямой и <CBF =90 - <EBF =90-60 =30 BF - высота, она перпендикулярна CD, т.е. треугольник BFC - прямоугольный, значит <BCF = 90 - <CBF = 90 -30 =60 Но <A = < C, значит <A =60 и можем найти высоту BE из треугольника AEB BE=AB* cos <A BE = 8*cos 60 = 8* корень(3)/2 = 4*корень(3) площадь параллелограмма равна произведению основания на высоту
S = AD*BE = 12*4*корень(3) = 48 * корень(3) кв. см
Противоположные углы у параллелограмма равны. Если два угла, прилежащие к одной стороне равны, то и остальные 2 угла равны. А параллелограмм с равными углами - прямоугольник