АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
Дано:
треугольник АВС,
угол А = угол С,
ВМ — высота.
Доказать: треугольник АВМ = треугольник СВМ.
Доказательство:
Свойство равнобедренного треугольника: если в треугольнике два угла равны, то этот треугольник является равнобедренным.
(У нас, по условию задачи, угол А равен углу С, значит треугольник АВС является равнобедренным)
угол А = угол С => треуг. АВС — равнобедренный.
(Равнобедренный треугольник — треугольник, у которого две стороны равны, эти две стороны называются боковыми сторонами, а третья сторона — основанием. Какие же стороны боковые? Признак равнобедренного треугольника: если треугольник является равнобедренным, то углы при его основании равны. Соответственно, сторона АС является основанием, а стороны АВ и ВС — боковые стороны и они равны)
АВ = ВС.
(Теперь разберёмся с высотой ВМ. Высота равнобедренного треугольника — перпендикуляр, проведённый из вершины треугольника, к противолежащей стороне, в данном случае, к основанию треугольника)
ВМ — высота, ВМ перпендикулярно АС. <рисунок1>
Свойство равнобедренного треугольника: в равнобедренном треугольнике медиана, биссектрисса и высота, проведённые из вершины, противолежащей основанию, совпадают.
(Получается, высота ВМ — это и биссектрисса ВМ, и медиана ВМ. Биссектриса — прямая, делящая угол пополам. Медиана — отрезок, соединяющий вершину треугольника с серединой противоположной стороны, в данном случае, с серединой основания)
Рассмотрим ВМ как биссектрису => угол АВМ = угол СВМ. <рисунок2>
Рассмотрим ВМ как медиану => АМ = МС. <рисунок3>
(Соединим все полученные данные и докажем, что треугольники АВМ и СВМ равны. По всем трём признакам равенства треугольников, эти треугольники равны, но распишем третий признак)
Третий признак равенства треугольников — по трём сторонам: если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
АВ = ВС, ВМ — общая сторона для двух треугольников, АМ = МС => треугольник АВМ = треугольник СВМ.