Объяснение:
Раз нам даны точки в пространстве, то скорее всего с векторами уже знакомы, тогда. Найдем векторы АВ и ВС, для этого нужно от координат конца отнять соответствующие координаты начала, тогда
(в)АВ(-5-2;4-5;-4-(-1))=(-7;-1;-3)
(в)BC(1-(-5);-2-4;2-(-4))=(6,-6,6)
По определению параллелограма это четырехугольник у которого 2 пары параллельных равных сторон, сделовательно (в)AB=(в)CD
(в)AB(-7;-1;-3), C(1;-2;2) Пусть точка D имеет координаты x,y,z. Следовательно (в)CD(x-1;y+2;z-2) и эти выражения x-1;y+2;z-2 соответственно равны -7;-1;-3. Тогда
x-1=-7⇔x=-6
y+2=-1⇔y=-3
z-2=-3⇔z=-1. Следовательно координаты точки D(-6,-3,-1)
Так как диагональ точкой пересечения делится пополам, то точка пересечения диагоналей это середина диагонали, диагональ - отрезок соединяющий 2 несоседние вершины, значит найдем середину BD или АС
Координаты середины отрезка находятся по формуле среднего арифмитеческого соответствующих координат концов, т.е. абсцисса первой точки+ абсцисса второй точки делить на 2, ордината и апликата соответственно, тогда
Середина Точка с этими координатами,пусть точка О, и есть точка пересечения диагоналей.
Длина AB .длина вектора это есть квадратный корень из суммы квадратов его координат, тогда длина АВ = длине вектора АВ
|(в)АВ|=
Объяснение:
№1
Чтобы найти нам площадь ABCD нам надо найти высоту BH и основание AD.
1. Рассмотрим ∆ABH: sinA=BH/AB
1/2=BH/8
отсюда BH=4;
2. AD=AH+HD
cis30°=AH/AB
√(3)/2=AH/8
8√(3)=2AH
AH=4√(3)
Отсюда AD=12+4√(3)≈19
3. Площадь ABCD=BH*AD=4*19=76см².
№2
Задача. Дан параллелограмм ABCD, боковая сторона равна 4 см, диагональ соединяющая вершины тупых уголов равна 5 см и перпендикулярна к боковым сторонам. Найдите основания параллелограмма.
Диагональ делит параллелограмм на 2 прямоугольных ∆ABD и ∆BDC.
Рассмотрим ∆ABD:
По теореме Пифагора:
AD²=AB²+AD²
AD²=16+25
AD²=41
AD=√(41)