М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bale2017
bale2017
11.01.2023 19:26 •  Геометрия

Составьте уравнение прямой, которая параллельна прямой y=3x+1 и проходит через центр круга x^2+y^2-8x+4y+11=0

👇
Ответ:
89836331552
89836331552
11.01.2023

Объяснение:

Задача - найти центр круга.

(x-Xo)² + (y-Yo)² = R² - уравнение окружности с центром О(Хо;Уо)

РЕШЕНИЕ

x² + y² - 8*x + 4*y + 11 = 0 -

Преобразуем.

(x²- 8*x) +(y²+4*y) + 11 =0

(x² - 2*x*4 + 4²) - 4² + (y² + 2*y*2 + 2²) - 2² + 11 = 0

(x - 4)² + (y + 2)² = -11 + 4² + 2² = - 11+16+4 = 9 = 3²

Получили центр окружности: О(4;-2)

Наклон прямой -  k = 3

Дано: Точка 0(4,-2), наклон  k = 3

b = 0у - k*0x = -2 - (3)*(4)  = -14

Уравнение прямой - Y = 3*x -14  - ответ.

Рисунок к задаче в приложении.


Составьте уравнение прямой, которая параллельна прямой y=3x+1 и проходит через центр круга x^2+y^2-8
4,5(50 оценок)
Открыть все ответы
Ответ:
danil782
danil782
11.01.2023

1)Два треугольника называются подобными, если их углы соответственно равны

1) да ; 2) нет

Вспомним 1-й признак подобия:

если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

2)Любые два прямоугольных и равнобедренных треугольника подобны.

1) нет ;2) да

Верно. По первому признаку. Углы при основании равны 45°,а напротив основания 90°

3)Любые два прямоугольных треугольника подобны.

1) да 2) нет

В таких треугольниках мы можем утверждать только о равенстве одного угла-прямого. Ни для одного признака подобия этого недостаточно

Неверно

4 )Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника, то такие треугольники подобны

1) да 2) нет

Более подходящие признаки

2-й -если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами равны, то треугольники подобны. Равенство углов нам не дано. Утверждать не можем

3-й -: если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то треугольники подобны. Нам даны по 2 стороны. Утверждать не можем

5)Если два треугольника подобны, то их соответствующие стороны равны

1) да; 2) нет

3-й признак: если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то треугольники подобны.

6)Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

1) да ; 2) нет

Теорема верная.

7)Если две сто­ро­ны и угол между ними од­но­го тре­уголь­ни­ка со­от­вет­ствен­но равны двум сто­ро­нам и углу между ними дру­го­го треугольника, то такие тре­уголь­ни­ки подобны.

1) да ; 2) нет

Это первый признак равенства. А,равные треугольники подобны

8)Если два угла одного треугольника соответственно пропорциональны двум углам другого треугольника, то такие треугольники подобны.

1) да ; 2) нет

Вспомним 1-й признак подобия:

если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

4,6(33 оценок)
Ответ:
lukynova20
lukynova20
11.01.2023
ответ:

Всё в разделе "Объяснение".

Объяснение:

1. Неверно.

Два треугольника называются подобными , если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

2. Верно.

Это 2 признак подобия треугольников.

3. Верно.

Даны два квадрата. Назовём их ABCD и A_1B_1C_1D_1.

Проведём диагональ AC в квадрате ABCD и диагональ A_1C_1 в квадрате A_1B_1C_1D_1.

Рассмотрим \triangle ABC, \triangle ACD, \triangle A_1B_1C_1, \triangle A_1C_1D_1.

У квадрата все углы прямые.

\angle B = \angle B_1 = \angle D = \angle D_1 = 90^{\circ}, по свойству квадрата.

\angle ACD = \angle ACB = \angle A_1C_1D_1 = \angle A_1C_1B_1, так как диагонали квадрата делят углы пополам.

\Rightarrow \triangle ABC\sim \triangle ACD \sim \triangle A_1B_1C_1 \sim \triangle A_1C_1D_1, по 1 признаку подобия треугольников.

\Rightarrow ABCD\sim A_1B_1C_1D_1.

4. Неверно.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
15 . заранее . подобные треугольники установите, истинны или ложны следующие высказывания: 1. два тр
4,6(93 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ