Дано: Δ АВС, АВ=10, АА₁=9, ВВ₁=12.
Найти S(АВС), СС₁.
Применяем теорему: медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины.
Следовательно, АО=6, ОА₁=3; ВО=8, ОВ₁=4.
Рассмотрим Δ АВО - прямоугольный, "египетский", (т.к. стороны кратны 3, 4 и 5).
S(ABO)=1\2 * 6 * 8=24 (ед²)
S(ABO)=S(BOC)=S(AOC) (по свойству медиан треугольника)
S(ABC)=24*3=72 (ед²)
Δ АОВ - прямоугольный, ОС₁ - медиана, ОС₁=1\2 АВ (по свойству медианы прямоугольного треугольника); ОС₁=5.
ОС₁=5*2=10; СС₁=5+10=15 (ед)
Дано: Δ АВС, АВ=10, АА₁=9, ВВ₁=12.
Найти S(АВС), СС₁.
Применяем теорему: медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины.
Следовательно, АО=6, ОА₁=3; ВО=8, ОВ₁=4.
Рассмотрим Δ АВО - прямоугольный, "египетский", (т.к. стороны кратны 3, 4 и 5).
S(ABO)=1\2 * 6 * 8=24 (ед²)
S(ABO)=S(BOC)=S(AOC) (по свойству медиан треугольника)
S(ABC)=24*3=72 (ед²)
Δ АОВ - прямоугольный, ОС₁ - медиана, ОС₁=1\2 АВ (по свойству медианы прямоугольного треугольника); ОС₁=5.
ОС₁=5*2=10; СС₁=5+10=15 (ед)
Проведем высоты ВМ и СН. Так, как меньшая основа будет 6см., а большая 12, и эта трапецыя равобедренная, то ВС=МН, отсюда АМ=НД, ВС=12-6=6см.
НД+АМ=12-6=6см., а значит НД=6/2=3см.
Расмотрим треугольник АВМ, у него: ВМА=90гр., как угол при высоте; ВАМ=60гр., за условием задачи, отсюда угол АВМ=30гр. Значит АМ=1/2*ВА, отсюда ВА=2*АМ=2*3=6см.
ответ:6см.
Подробнее - на -
Объяснение: