Углы AOC и FOD равны как вертикальные. Треугольники CAO и DFO равны по стороне и прилежащим углам. В равных треугольниках против равных углов лежат равные стороны, CO=DO. Треугольники CBO и DEO равны по трем сторонам. В равных треугольниках против равных сторон лежат равные углы, ∠CBO=∠DEO.
AO=FO, ∠A=∠F (по условию), ∠AOC=∠FOD (вертикальные углы)
=> △CAO=△DFO (по стороне и прилежащим углам)
=> CO=DO (соответствующие стороны в равных треугольниках)
CB=DE, BO=EO (по условию)
=> △CBO=△DEO (по трем сторонам)
=> ∠CBO=∠DEO (соответствующие углы в равных треугольниках)
∠3 = ∠1 = 72° как вертикальные,
∠5 = ∠1 = 72° и ∠7 = ∠3 = 72° как соответственные при пересечении параллельных прямых а и b секущей с.
∠4 + ∠5 = 180° по свойству односторонних углов.
∠4 = 180° - ∠5 = 180°- 72° = 108°
∠2 = ∠4 = 108° как вертикальные,
∠8 = ∠4 = 108° и ∠6 = ∠2 = 108° как соответственные.
2.
Обозначим один из односторонних углов х, тогда другой 1,5х.
Сумма односторонних углов при пересечении параллельных прямых секущей равна 180°:
x+ 1,5x = 180°
2,5x = 180°
x = 180° / 2,5 = 72°
1,5 x = 108°