Т.К. АВ || CD И AF - СЕКУЩАЯ, ТО∠АFD = ∠BAF, ПОЛУЧИЛИ ЧТО В ТРЕУГОЛЬНИКАХ AGD И FGD ДВА УГЛА РАВНЫ МЕЖДУ СОБОЙ, ЗНАЧИТ И ТРЕТЬИ УГЛЫ ТОЖЕ РАВНЫ, Т.Е. ∠AGD =∠FGD. ∠AGE = ∠FGD Т.К. ОН ВЕРТИКАЛЬНЫЕ. ПОЛУЧИЛИ ∠AGD =∠FGD = ∠AGE. ЗНАЧИТ ∠EGF РАВЕН КАЖДОМУ ИЗ ТРЕХ. Т.О ВСЕ ЧЕТЫРЕ УГЛА РАВНЫ. ЗНАЧИТ 360° : 4 = 90°. СЛЕДОВАТЕЛЬНО AF ⊥ DE.
Δ AGD = Δ FGD ПО ОБЩЕЙ СТОРОНЕ GD И РАВНЫХ УГЛАХ ADG И GDF, AGD И FGD ПОЛУЧИМ, ЧТО AG = GF.
Відповідь: длина диагонали АВ 64 см.
Пояснення:
1) ∠АВЕ=180°-60°-90°=30°.
2)ЕА-катет, лежащий против угла 30°. равен половине гипотенузы АВ.
АЕ=1/2АВ
Пусть АВ- х см, АЕ=1/2х
ДЕ=ЕА=1/2х, тогда ДА=х см
3) треугольники АЕВ и ЕБД равны по признаку равенства треугольников (по двум сторонам и углу между ними или по расчету катета и гипотенузы)
4) Значит диагональ ВД=АВ.
если АД=АВ, а ВА=ВД, то треугольник АВД - равносторонний.
5) формула периметра параллелограмма P=1/2 (a+b)
1/2 (2х)=64
х=64
АД=АВ=ВД=64 (см)
ответ: диагональ ВД=64 см.