В треугольнике ABC AC=CB=10см, угол A=30 градусов, BK- перпендикуляр у плоскости треугольника и равен 5 см. Найти расстояние от K до AC
Рассмотрим образованную пирамиду АВСК. КВ перпендикулярно АВС, значит нам необходимо найти длину высоты, опущенной в грани АСК из вершины К на АС. По теореме о трех перпендикулярах ее проекция на плоскость АВС будет перпендикулярна АС. Обозначим точку пересечения высоты с АС через Н. Тогда нужно найти КН.
Рассмотрим основание пирамиды - треугольник АВС. Он равнобедренный АС=ВС=10, с углом у основания А=30 градусов. Опустим высоту из вершины треугольника С на АВ - СМ. Высота, опущенная из точки С, будет и биссектрисой, и медианой треугольника. То есть АМ=МВ. Треугольник АСМ - прямоугольный, с одним из осмтрых углов = 30 градусов, значит катет, лежащий против этого угла, равен половине гипотенузы: АМ=1/2*АС, АМ=1/2*10=5 (см) . По теореме Пифагора найдем второй катет СМ:
CM=sqrt(AC2-AM2)
CM=sqrt(100-25)=sqrt75=5sqrt3
BH- проекция КН на плоскость основания АВС, и, как было уже отмечено, ВН перпендикулярна АС. Рассм отрим треугольники АНВ и АМС- они подобны:
АН/АМ=НВ/МС=АВ/АС
НВ/МС=АВ/АС
НВ=МС*АВ/АС
НВ=5*(2*5sqrt3)/10=5sqrt3
Треугольник КНВ - прямоугольный (КВ перпендикулярно плоскости АВС) . По теореме Пифагора найдем КН:
KH2=KB2+HB2
KH=sqrt(25+75)=sqrt100=10 (см)
площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S(ABC)=1/2*AC*BN=1/2*34*24=408
площадь треугольника равна половине произведения стороны на медиану, проведенную к этой стороне, и на синус угла между ними
S(ABC)=1/2*AC*BK*sin(AKB)
sin(AKB)=2*S(ABC)/(AC*BK)=2*408\(34*25)=24/25
(по основному тригонометрическому тождеству)
cos(AKB)=7/25 или cos(AKB)=-7/25
тогда
одна из сторон равна по теореме косинусов
a^2=AK^2+BK^2-2*AK*BK*cos(AKB)=
=17^2+25^2-2*17*25*7/25=676
a=корень(676)=26
а вторая
с^2=AK^2+BK^2-2*AK*BK*(-7/25)=
=17^2+25^2+2*17*25*7/25=1152
c=24*корень(2)
периметр равен a+c+AC=26+34+24*корень(2)=60+24*корень(2)
ответ:абс 10-135:2=
ответ в калькуляторе узнаешь
Объяснение: