Допусти, что скорость 1-го бегуна = Х км/ч,
тогда скорость 2-го бегуна = Х+5 км/ч
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун первый круг 15 минут назад", значит 2-й бегун пробежал первый круг за время = 1 час - 15 минут = 45 минут
45 минут = 45/60 = 0,75 часа
Длина круга = скорость бегуна * время, которое потрачено на преодоление одного круга.
Поэтому Длина круга = скорость 1-го бегуна * время, которое потрачено на преодоление одного круга 1-м бегуном = (Х+5) * 0,75= 0,75Х + 3,75
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга..."
Значит Длина круга = скорость 2-го бегуна * время, которое потрачено 2-м бегуном + 1 км, который оставался до окончания первого круга= Х * 1 +1 = Х+1
Поэтому сможем составить уравнение:
0,75Х + 3,75 = Х+1
Х-0,75Х = 3,75-1
0,25Х = 2,75
Х=2,75/0,25
Х=11 - это скорость 1-го бегуна
Тогда скорость 2-го бегуна = Х+5 = 11+5=16 км/ч
ответ: скорость 2-го бегуна = 16км/ч
1. Описать окружность можно только около равнобедренной трапеции, а у нее углы при основании равны, а углы, прилежащие к боковой стороне составляют в сумме 180, поэтому углы будут 49°; 180°-49°=131°. ответ 49°; 131°; 131°.
2. Т.к. ОА и ОВ - радиусы, проведенные в точки касания, а СА=СВ по свойству отрезков касательных. проведенных из одной точки, то прямоугольные треугольники АОС и ВОС равны по гипотенузе и катету. (∠А=∠В=90°), значит, ∠АОС=∠ВОС⇒=90°-0.5∠АСО, тогда ∠АОВ=180°-83°=97°
3. Периметр равен 36, значит, сторона 36/4=9, высота ромба равна частному от деления площади на сторону, то есть 54/9=6
4. tg∠B=АС/ВС=7/2=3.5