Объяснение:
Итак по условию мы видим что стороны:
KH=HE
FK=PE
И углы 1 и 2 равны значит и смежные между собой будут равны:
Если угол 1= углу 2, то
Угол FKH= углу PEH.
И зная это можно утверждать по II признаку равенства треугольников что они равны.
Итак, у нас есть прямоугольный треугольник ABH. Угол А равен 60, значит, угол В равен 30 градусов. Катет, лежащий против угла в 30 градусов, равен половине гипотенузы, то есть АН=половина АВ=4см.
Нам дано, что АД=8см, мы вычислили, что АН=4 см, следовательно, ДН тоже равна 4 см.
Т.к. мы имеем прямоугольную трапецию, то BC = ДН = 4 см.
Осталось вычислить ВН. По теореме Пифагора находим, что она равна 4 корням из 3.
Подставляем в формулу:
Площадь трапеции = полусумма оснований умножить на высоту.
Площадь трапеции = (4+8)\2*4 корня из 3 = 24 корня из трех.
Т.к., Н - середина КЕ, то КН=НЕ; ∠1 = ∠2; KF=EP, следовательно ΔKFH=ΔEPH по углу и двум прилежащим к нему сторонам.