Все грани куба - квадраты. Диагональ квадрата равна а√2.
Диагональ куба - а√3.
а) расстояние от вершины В₁:
до ребер, лежащих с вершиной В₁ в одной грани (ребра А₁D₁, C₁D₁, AB, BC, AA₁, CC₁) равно длине ребра - а (синие отрезки);
до ребер AD, DD₁ и DC равно диагонали квадрата - а√2 (зеленые отрезки);
до трех остальных ребер - В₁А, В₁В и В₁С - равно нулю.
б) до вершин, лежащих с вершиной В₁ на одном ребре (вершины А₁, В₁, С₁) равно длине ребра - а (синие отрезки);
до вершин А, С, D₁ равно диагонали квадрата а√2 (зеленые отрезки);
до вершины D равно длине диагонали куба - а√3.
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.