Теорема: если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180°, То прямые параллельны. доказательство: даны две прямые а и b образуют с секущей АВ разные внутренние накрест лежащие углы. Допустим, пусть прямые a и b не параллельны, и пересекаются в некоторой точке С. секущая AB разбивает плоскость на две полуплоскости. В одной из них лежит точка C. Построим треугольник АBС1, равный треугольнику ABC, с вершиной C1 в другой полуплоскости. По условию внутренние накрест лежащие углы при прямых а b и секущей AB равны. и соответствующие углы треугольников ABC и ВАС1 совершенной А и В равны, то они совпадают с внутренними накрест лежащими углами. значит прямая АС1 совпадает с прямой а, а прямая BC1 совпадает с прямой b. получается, что через точки C и C1 проходят две различные Прямые a и b. А это невозможно, значит, Прямые a и b параллельны. если у прямых a и b и секущей AB сумма внутренних односторонних углов равна 180°, То, внутренние накрест лежащие углы равны.
Для решения этой задачи нужно вспомнить, что в треугольнике с проведёнными высотами есть множество пар равных углов. В частности, в треугольнике KGB KN⊥GB, GM⊥KB, углы между соответственно перпендикулярными прямыми равны, значит ∠KLM=∠GBК.
Даны высоты KN и GM и угол между ними α. Построим треугольник.
Построим угол АВС равный α. На стороне АВ построим окружности с радиусами AH и IJ, равными высоте KN. Проведём общую касательную к окружностям HJ. Имеем точку пересечения со стороной ВС, обозначим её К. Построим перпендикуляр KN к стороне АВ. Действительно, KN - наша высота, ведь она параллельна АН и IJ и перпендикулярна АВ и HJ.
Аналогично получаем точку G. Строить высоту GM уже не нужно, но если построить, то точка пересечения L высот KN и GM даст угол KLM, равный углу АВС, то есть α.
противоположный угол ромба тоже 120°;
сумма всех углов 360°
360°-120°-120°=120°
120°:2=60°
90°-60°=30°
ответ: углы ромба с диагональю 60° и 30°