Из ΔAMB по теореме косинусов : AB² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMB (1) ; Из ΔAMC : AC² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMC ; но cos∠AMC =cos(180° -∠AMB) = - cos∠AMB поэтому AC² =AM² +(BC/2)² +2AM*(BC/2)cos∠AMB (2) ; суммируем (1) и (2) получаем AB² +AC² =2AM² + BC²/2 ⇔4AM² =2AB² +2AC² -BC² ; но BC² =AB² +AC²- 2AB *AC*cosA поэтому : 4AM² =AB² +AC² + 2AB *AC*cosA.
* * * Можно продолжать медиана MD =AM и M соединить с вершинами B и C. Получится параллелограмм ABDC , где верно 2(AB²+AC²) = AD² +BC² ⇔2(AB²+AC²) = 4AM² +BC².
Для медианы CN : 4CN² =CB² +CA² +2CB*CA*cosC. Если ΔABC равнобедренный CB =AB ⇒∠C =∠A , то 4CN² =4AM² или CN =AM .
Дан правильный тетраэдр МАВС. Все его ребра равны. АВ=АС=ВС=МА=МВ=МС=√6/2.
Через точку А₁ на ребре АВ, АА₁=А₁В в плоскости треугольника АМВ проведем прямую параллельную прямой АМ. Получим точку М₁, лежащую на ребре МВ, такую, что ММ₁=М₁В. АМ || A₁M₁. Через точку М₁ в грани МВС проведём прямую параллельную МС. Получим точку С₁ на ребре ВС, так что ВС₁=С₁С. МС || М₁С₁ Соединим точки А₁ и С₁, получим треугольник А₁С₁М₁ - нужное нам сечение. Причем А₁С₁ || AC, так как является средней линией треугольника АВС. Каждая сторона треугольника А₁М₁С₁ является средней линией треугольника АМС и А₁М₁=А₁С₁=М₁С₁=√6/4
Чтобы найти расстояние между плоскостями АМС и А₁М₁С₁ опустим перпендикуляр из точки В на плоскость АМС. Так как дан тетраэр, то вершина В проектируется в центр окружности, описанной около правильного треугольника АМС ОА=ОС=ОМ=R Аналогично точка О₁ - центр окружности, описанной около правильного треугольника А₁М₁С₁ О₁А₁=О₁С₁=О₁М₁=R/2 в силу подобия треугольников АМС и А₁М₁С₁ с коэффициентом подобия 2.
радиус окружности описанной около равностороннего треугольника можно найти по формуле
при a=√6/2 получаем R=√6/2 ·√3/3=√2/2 Тогда по теореме Пифагора ВО²=АВ²-АО²=(√6/2)²-(√2/2)²=6/4 - 2/4=4/4=1 Значит ВО₁=1/2 в силу подобия и ОО₁=ВО-ВО₁=1/2 ответ 1/2
AB² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMB (1) ;
Из ΔAMC :
AC² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMC ;
но cos∠AMC =cos(180° -∠AMB) = - cos∠AMB поэтому
AC² =AM² +(BC/2)² +2AM*(BC/2)cos∠AMB (2) ;
суммируем (1) и (2) получаем
AB² +AC² =2AM² + BC²/2 ⇔4AM² =2AB² +2AC² -BC² ;
но BC² =AB² +AC²- 2AB *AC*cosA поэтому :
4AM² =AB² +AC² + 2AB *AC*cosA.
* * *
Можно продолжать медиана MD =AM и M соединить с вершинами
B и C. Получится параллелограмм ABDC , где верно
2(AB²+AC²) = AD² +BC² ⇔2(AB²+AC²) = 4AM² +BC².
Для медианы CN : 4CN² =CB² +CA² +2CB*CA*cosC. Если ΔABC равнобедренный CB =AB ⇒∠C =∠A , то 4CN² =4AM² или CN =AM .