Вариант 2
а1. даны а(3; -1), b(-1; -3), c(5; 12). найдите координаты векторов ac, bc.
а2. даны векторы а? -2; 6, bi -4; 8; . найдите координаты векторов c = a+2b и d = b— а.
аз. найдите координаты середины отрезка с концами а (10; –3), в(14; -1).
в1. треугольник abc задан координатами вершин а (0; 12), в (9; 0), c(0; -12). найдите длину медианы см треугольник
в2. даны точки
запишите уравнение окружности с центром в точке а и радиусом ав. принадлежит
ли этой окружности точк
№2. DABC – тетраэдр. М - середина АD. МК||(АВС). МК=3 см. Найдите длину ребра DC этого тетраэдра.
Тетраэдр — простейший многогранник, гранями которого являются четыре треугольника, т.е. треугольная пирамида. В условии не указаны длины ребер DABC. Поэтому решение даётся для правильного тетраэдра, все ребра которого равны.
МК||(АВС). МК лежит в плоскости ∆ АDC. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. ⇒ МК║АВ. Так как М – середина АD, а МК||АВ, то МК - средняя линия ∆ АDB и равна половине АВ ⇒ AD=АВ=2•МК=6 см.
* * *
№3. ОАВ - прямоугольный треугольник (∠В=90°), ∠ АОВ=60°, АО=8 см, OF⊥АОВ). Найдите расстояние от точки D до прямой АВ, если OF=3 см.
Расстоянием от точки до прямой является длина отрезка, проведенного из данной точки перпендикулярно данной прямой. Треугольник АОВ прямоугольный, ОВ⊥ВА и является проекцией наклонной FB. По т. о 3-х перпендикулярах FB⊥АВ, поэтому является искомым расстоянием.
FО перпендикулярна плоскости ∆ АОВ. Если прямая, пересекающая плоскость, перпендикулярна этой плоскости, то она перпендикулярна каждой прямой, которая лежит в данной плоскости. ⇒ Треугольник FOB прямоугольный. FO=3 см (дано). ОВ=АО•cos60°=4см. В ∆ FOB по т.Пифагора FВ=√(FO²+OB²)=√(9+16)=5 см