Вопрос №1:
1. Докажите, что равнобедреная трапеция Авсд и прямоугольник MBKД, изображенные на рисунке, равновеликие и равносоставленные
Объяснение:
Дано:
АВКD - Четырехугольник
⏢АВСD - Трапеция
▯МВКD - Прямоугольник
АВСD и МВКD - ?
Дан четырёхугольник АВКD
Опустим высоту СЕ⊥AD
ΔАВМ = ΔСКD = ΔЕСD
1. Равновеликие фигуры - фигуры, которые имеют одинаковую площадь.
1) ⏢АВСD = ΔАВМ + ΔЕСD + ☐МВСЕ
2) ▯МВКD = ΔЕСD + ΔСКD + ☐МВСЕ ⇒ ⏢
АВСD и ▯МВКD - имеют общий ☐МВСЕ и попарно одинаковые прямоугольные треугольники Δ ⇒ площадь ⏢АВСD и площадь ▯МВКD равны ⇒ РАВНОВЕЛИКИЕ
2. Две фигуры называются равносоставленными, если они могут быть разделены на одинаковое число попарно равных фигур.
Так как ⏢АВСD и ▯МВКD имеют один ☐МВСЕ и попарно одинаковые прямоугольные треугольники, у ⏢АВСD ΔАВМ = ΔЕСD, у ▯МВКD ΔЕСD = ΔСКD, то они равносоставленные
ответ: ⏢АВСD и ▯МВКD равновеликие и равносоставленные
Блин я не знаю ответа на №2 и №3 :(
Если где-то ошибка, то пишите в комменты (исправлю)
Удачи в учёбе :)
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.