Пусть градусная мера одной части будет х. Тогда дуга АВ содержит 3х, дуга ВС - 4х и АС-5х. Окружность содержит 360°, ⇒ 3х+4х+5х=360° ⇒ х=30° 1) Дуга АВ равна: 30°*3=90° На нее опирается вписанный угол АСВ⇒ По свойству градусной величины вписанного угла он равен половине этой дуги: 90°:2=45° 2) Дуга ВС равна 30°*4=120° На эту дугу опирается вписанный угол САВ; он равен её половине: 120°:2=60° 3)Дуга АС равна 30°*5=150° На эту дугу опирается угол АВС, и он равен её половине: 150°:2=75° Углы треугольника АВС равны половинам градусных мер дуг, на которые они опираются: ∠С=45°, ∠ А= 60°, ∠ В=75°
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
ответ:92
Объяснение:укажите номер элемента названного по имени бога неба