Луч oc-биссектриса луч b проходит между лучами a и c найдите угол ac луч b проходит между лучами a и c найдите угол ac если ab = 101 градус,угол bc=11 если ab = 101 градус,угол bc=11 aob если угол aoc =60 градусов
Шаг 1. Поставить острие циркуля в вершину угла и на обоих лучах угла отложить равные отрезки (сделать засечки) . Шаг 2. Не меняя раствора циркуля поставить поочередно острие циркуля на засечки, сделанные в шаге 1, и провести дуги, так, чтобы они пересеклись. Шаг 3. Точку пересечения дуг соединить с вершиной угла. Это и будет биссектриса. Объяснение. Если соединить засечки, сделанные на шаге 1 с точкой пересечения дуг, то получится ромб. Диагональ ромба является биссектрисой его противоположных углов.
В правильной пирамиде высота её проходит в основании через точку пересечения медиан (они же и высоты) Этой точкой медианы делятся в отношении 2:1, считая от вершины треугольника основания. Рассмотрим сечение пирамиды и описанного около неё шара, проходящее через боковое ребро пирамиды. Медиана (высота) основания равна 3*cos 30° = 3*√3/2. В сечении будет прямоугольный треугольник. Один из катетов его - это 2/3 медианы основания. Он равен 3*√3/2*(2*3) = √3. Второй катет - это высота пирамиды. Она равна √3*tg 30° = √3*(1/√3) = 1. Боковое ребро - это гипотенуза в рассматриваемом треугольнике. Оно равно 1 / sin 30° = 1 / (1/2) = 2. Центр шара, как и центр описанной вокруг рассмотренного треугольника окружности, находится на пересечении перпендикуляра к середине бокового ребра и высоты пирамиды. Эта точка будет находиться ниже основания пирамиды. Радиус шара равен 1 / sin 30° = 1 / (1/2) = 2.