Если острый угол ромба 60 градусов ,то он своей малой диагональю разбивается на два равносторонних треугольника.Тогда его малая диагональ = 4 см.Диагонали ромба перпендикулярны и делятся в точке пересечения пополам.Рассмотрим прямоугольный треугольник АОВ, уголАОВ=90,АВ=4, ОВ=2 (как половина от малой диагонали ВД).По теореме Пифагора АО=square 12 (кв.корень из 12)=2*square3. Высота ОК этого треугольника, опущенная из точки О равна (АО*ОВ)/АВ (по свойству такой высоты),значит ОК=2*2*square3/4=square3. Так как стороны ромба равноудалены от точки М, то эта точка проектируется в центр окружности, вписанной в ромб.Радиусом этой окружности будет как раз высота ОК. Из прямоугольного треугольника МОК найдем ОМ.Длина перпендикуляра ОМ и есть расстояние от точки М до плоскости ромба. По теореме Пифагора ОМ=square(MK^2-OK^2)=square(25-3)=square22.
Объяснение:
Объяснение:
S=1/2*BC*AC*sin<C
sin120°=√3/2
S=1/2*2*4*√3/2=2√3 ед²
Теорема косинусов
АВ=√(ВС ²+АС²-2*ВС*АС*cos<C)
cos120°=-1/2
AB=√(2²+4²-2*2*4(-1/2))=√(4+16+8)=√28=
=2√7 ед
S=1/2*h1*АС
h1=2*S/AC=2*2√3/4=√3 ед высота проведенная к стороне АС.
S=1/2*h2*BC
h2=2*S/BC=2*2√3/2=2√3 ед высота проведенная к стороне ВС.
S=1/2*h3*AB
h3=2*S/AB=2*2√3/2√7=2√3/√7=2√21/7 ед высота проведенная к стороне АВ.
S=r*p, где р- полупериметр
р=(АВ+ВС+АС)/2=(2+4+2√7)/2=(2(3+√7))/2=
=3+√7.
r=S/p=2√3/(3+√7) ед.
R=(AB*BC*AC)/4S=(2*4*2√7)/4*2√3=
=2√7/√3=2√7√3/3=2√21/3 ед.
ответ:
да сохроняют да да да да