М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Neon1407
Neon1407
10.04.2023 12:14 •  Геометрия

Диагонали параллелограмма равны 12 и 17, а угол между ними равен 30°. найдите площадь этого параллелограмма.
дано и решение
ответ должен быть 51

👇
Ответ:
samolutchenckova
samolutchenckova
10.04.2023

Дано : ABCD-параллелограмм

d1=12

d2=17

a=30°

Найти : S-?

Решение.

Площадь параллелограмма через длины его диагоналей d1=12 и d2=17 можно найти по формуле:

S=1/2× d1×d2×sin a

где α=30° - угол между ними. Подставляем числовые значения в формулу, получаем:

S=1/2× 12×17×sin 30°(0.5)=102×0.5

51

ответ: 51.

4,8(24 оценок)
Открыть все ответы
Ответ:
Kristina1605lps
Kristina1605lps
10.04.2023

1. Сумма углов в любом треугольнике равна 180°. Найдем угол A: 180 - ( 56 + 64 ) = 60°.

BC = 3√3 ( по условию ), противолежащий угол A = 60°.

По теореме синусов:

(3√3) / sin 60° = 2R

(3√3) / (√3/2) = 2R

6 = 2R

R = 3.

2. В равнобедренном треугольнике углы при основании равны. Найдем углы при основании треугольника ABC: (180 - 36) / 2 = 72°.

Значит угол BAC = BCA = 72°.

AD - биссектриса, делит угол BAC на два равных угла: BAD = DAC = 36°.

В треугольнике ADC нам известны два угла: DAC = 36°, DCA = 72°. Найдем третий угол:

180 - ( 72 + 36 ) = 72. Значит треугольник ADC - равнобедренный, так как углы при его основании равны.


Заранее то я полный ! 1)в треугольнике abc угол b=56,угол c равен 64 bc=3√3! найдите радиус описанно
4,6(84 оценок)
Ответ:
FayaKuraeva
FayaKuraeva
10.04.2023

1) Первая задача решается немного легче на мой взгляд. Стоит вспомнить теорему синусов в расширенном виде.

 

Здесь

 

\frac{BC}{\sin\angle A}=2R\quad (1)

 

R - искомый радиус окружности.

 

Теперь надо найти угол А. Сумма углов в треугольнике равна 180 градусам.

Остальные два угла известны по условию задачи.

 

\angle A=180^0-56^0-64^0

 

\angle A=60^0

Подставим в (1)

\frac{3\sqrt{3}}{\sin60^0}=2R

 

\frac{3\sqrt{3}}{\frac{\sqrt{3}}{2}}=2R

 

\frac{2*3\sqrt{3}}{\sqrt{3}}=2R

сократим на 2 обе части

\frac{3\sqrt{3}}{\sqrt{3}}=R

 

R=3.

 

2) Докажем, что треугольник ACD - равнобедренный. Смотри рисунок во вложении. Так как АВ=ВС, то углы ВАС и ВСА равны. Вычислим сколько градусов составляют эти углы. Сумма всех углов в треугольнике равна 180 градусам. В самом треугольнике АВС

 

Пусть

 

\angle BAC=\angle BCA=x

 

180=x+x+36

180=2x+36

2x=180-36

2x=144

x=72

Так как AD - биссектриса, то

\angle BAD=\angle DAC=0,5\angle BAC

 

\angle BAD=\angle DAC=0,5*72^0

 

\angle BAD=\angle DAC=36^0

 

Теперь знаем два угла в треугольнике ADC.

 

\angle DAC=36^0, \quad \angle DCA=72^0

 

По той же теореме о сумме углов в треугольнике

 

\angle ADC=180^0-\angle DCA-\angle DAC

 

\angle ADC=180^0-72^0-36^0

 

\angle ADC=72^0

 

Получается, что

 

\angle DCA=\angle ADC=72^0

 

Значит два угла в треугольнике ACD - равны, поэтому треугольник равнобедренный.

 

4,8(57 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ