Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то
Т.к. треугольник равнобедренный, то его углы при основании равны, к тому и две стороны. Нам дан внешний угол, который равен менее 90°, значит, сам угол треугольника тупой. Как мы знаем: Против большего угла лежит большая сторона. Получаем, что именно данное основание больше одной из сторон на 4,4. Периметр треугольника равен сумме всех сторон: P = a + b + c. Допустим, а и b являются равными сторонами; Тогда b = a, тогда с = а + 4,5; Запишем: P = 2 a + ( a + 4,4); Подставим: 12 = 3 a а = 4 см = b. Следовательно c = 8,4 cм. ответ: 4 см; 4 см; 8,4 см.
1
Объяснение:
Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то
$\displaystyle \angle$BOC = 90o + $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \angle$CAB = 90o + 30o = 120o.
Если R — искомый радиус, то
R = $\displaystyle {\frac{BC}{2\sin \angle BOC}}$ = $\displaystyle {\frac{\sqrt{3}}{2\sin 120^{\circ}}}$ = 1.