Основание пирамиды равнобедренный треугольник,три его смежных ребра попарно перпендикулярны и равны 6см,6см и 8см.найдите площадь полной поверхности. ! нужно.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
94)
Угол - у. (буду так сокращать)
1. у1=у2 => а параллельно в (как соответственные углы)
2. у2=у4 (у4 - угол напротив угла 2) - как вертикальные углы
3. у2=у4=у2 => в параллельно с (как соответственные углы)
4. а параллельно в, в параллельно с => а параллельно с.
ЧТД
95)
1. Продлим ВС и В1С1.
уВСА=уВ1С1А1 (т. к треугольники равнобедренные) =>
При ВС и В1С1 и секущей АС1 - углы ВСА и В1С1А1 - соответственные углы, => ВС параллельно В1С1
ЧТД
96)
1. у. РЕВ = у. 1 как вертикальные
у. 1 = у. 2 (т. к треугольник равнобедренный)
2. у. ЕNF= 180° - у. 1 - у. 2 = 180° - у. МЕР - у. РЕВ = у. МЕА (а они в свою очередь соответственные) => АВ параллельно CD
ЧТД