Найдите среднюю линию равнобедреного треугольника, параллельную основанию, если боковая сторона данного треугольника равна 10мм, а периметр треугольника 28мм с большей подробностью
АВС - прямоугольный тр-ник, угол В прямой, АС - гипотенуза. ВМ - медиана. Медиана делит сторону, к которой она проведена, пополам. Значит АМ = МС. В прямоугольном тр-нике медиана, проведенная к гипотенузе, равна ее половине, т.е. ВМ = ВМ = СМ = 10 см, тогда гипотенуза АС = 20 см. Медиана ВМ делит прямой угол в отношении 1 : 2, значит угол АВМ = 90 : 3 * 2 = 60 градусов угол СВМ = 90 - 60 = 30 градусов. Тр-ник АМВ - равнобедренный, поскольку АМ = ВМ, АВ - основание. Углы при основании равны, т.е. угол МАВ = МВА = 60, тогда угол АМВ = 180 - 60 * 2 = 60. Значит тр-ник АМВ равносторонний, АВ = 10 см. Меньшая средняя линия параллельна меньшей стороне (АВ) и равна ее половине, т.е. 5 см.
Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
Надеюсь, что все понятно)