Двугранный угол при боковой грани для правильного тетраэдра, очевидно, равен углу наклона боковой грани к плоскости основания:
рассмотрим правильный тетраэдр SA1A2A3 с длиной ребра a. SB u BA1 высоты к A1A3 , Так как этот треугольник является правильным, то его высота одновременно является биссектрисой и медианой. Медианы, как известно, точкой своего пересечения делятся в отношении 2 : 1, считая от вершины. Несложно найти и точку пересечения медиан. Так как тетраэдр правильный, то этой точкой будет точка O – центр правильного треугольника Основание высоты правильного тетраэдра, опущенной из точки S, также проектируется в точку O. Значит, ВО=1/3 А3В =а/2 корня из3 В правильном треугольнике длина апофемы тетраэдра равна SB= а корней из3/2 значит cosB=BO/BS =1/3
1. Рассмотрим треугольник АВА1. Он прямоугольный, т.к. АА1 - перпендикуляр. Угол АВА1 = 30 градусам. Катет, лежащий против угла в 30 градусов, равен половине гипотенузы, значит, АВ = 2 * АА1.
2. Воспользуемся теоремой Пифагора.
АВ^2 = АА1^2 + А1В^2
(2АА1)^2 = АА1^2 + 225
4АА1^2 = АА1^2 + 225
3АА1^2 = 225
АА1^2 = 75
АА1 = 5 корней из 3.
АВ = 2 * АА1 = 10 корней из 3.
Можно решить вторым без теоремы Пифагора.
1. В прямоугольном треугольнике косинус угла равняется отношению прилежащего катета к гипотенузе.
cоs 30 = 15 / АВ
cos 30 = корень из 3 / 2
Получаем пропорцию, решаем:
АВ * корень из 3 = 30
АВ = 30 / корень из 3
АВ = 10 корней из 3
2. По той же теореме о катете, лежащем против угла в 30 градусов, вячисляем длину катета АА1:
АА1 = АВ / 2 = 5 корней из 3.
построй прямую, построй на ней ВС после угол из точки А желательно поострее, после из точки В проведи радиус равный половине АВ, где соприкоснётся со стороной проведённого угла там ставь точку С. Если не получается уменьше угол