Для решения этой задачи разберем взаимоотношения сторон и расстояний до точек касания окружности, вписанной в треугольник. Обойдемся пез чертежа?
Есть треугольник АВС. обозначим стороны, лежащие против соответствующих углов, через а,в,с. Расстояния от соответствующих углов до точек касания вписанной окружности равны (это доказывать не надо?!). Пусть точки касания: на стороне а -> n, на стороне b -> k, на стороне c -> m. Имеем Аm =Ak, Bm=Bn, Cn=Ck. Тогда полупериметр треугольника АВС можно выразить так: (Am+mB+Ba+aC+Ck+kA)/2 = Am+Bn+Ck. То есть полупериметр (р) равен сумме расстояний от каждого угла до одной точки касания.
Перенесем полученные знания на нашу задачу. Расстояние между точками касания окружностей с медианой BE равно тЕ-кЕ (где т и к - точки касания на медиане).
В треугольнике ЕВС Ет = р1-ВС (сторона против угла Е).
В треугольнике АВЕ Ек = р2-АВ (сторона против угла Е).
Ет-Ек искомое расстояние равно р1 - ВС - р2 +АВ.
Но р1 = (ЕВ+ВС+ЕС)/2
р2 = (АВ+ВЕ+АЕ)/2
но АЕ =ЕС, а АВ=ВС+14, то есть р1-р2=7
Ет-Ек = 14-7 = 7.
Извини за сумбурность.
Треугольник ba1c1 - равносторонний, все углы в нем 60 градусов.
Это все решение (причем самое полное и точное из всех). Но можно не останавливаться на достигнутом, и соединить вершины этого треугольника с вершиной куба d. Получается пирамида, у которой все грани - равносторонние треугольники. То есть получился тетраэдр (или, если хотите, правильный тераэдр, хотя это уточнение и лишнее - тетраэдром называют именно правильную треугольную пирамиду с равными ребрами), вписаный в куб. Конечно же, можно и наоборот - для любого тетраэдра можно построить такой куб, что ребра тетраэдра будут диагоналями граней куба.
Следствия.
Во первых, скрещивающиеся ребра тетраэдра взаимно перпендикулярны (в данном случае, к примеру, bd перпендикулярно a1c1, поскольку a1c1 II ac, а ac и bd - диагонали квадрата abcd, точно также доказывается перпендикулярность остальных пар скрещивающихся ребер тетраэдра).
Во вторых, отрезок, соединяющий середины скрещивающихся ребер тетраэдра, перпендикулярен этим ребрам и равен длине ребра тетраэдра, умноженной на √2/2. В самом деле, это отрезок, соединяющий центры противоположных граней куба, то есть он равен стороне куба, а ребро тетраэдра равно диагонали грани куба, откуда и получатеся соотношение длин.
Конечно, к задаче это имеет косвенное отношение (точнее, не имеет ни какого), но уж больно неприятно выдавать решение, занимающее полстрочки.