Ввыпуклом четырехугольнике abcd все стороны имеют разные длины. диагонали четырехугольника пересекаются в точке о, ос=5 см, ов=6, оа=15, оd=18 см. докажите, что четырехугольник трапеция
а) В треугольниках ВОС и АОD вертикальные углы при О равны. ОВ:ОD=6:18=1/3;
СО:ОС=5:15=1/3 ⇒ Сходственные стороны ∆ ВОС и ∆ АОD пропорциональны.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
Из подобия треугольников следует равенство их накрестлежащих углов. Из равенства накрестлежащих углов при пересечении прямых ВС и АD секущими АС и ВD следует параллельность сторон ВС и AD.
Две стороны четырехугольника АВСD параллельны - это признак трапеции. Доказано.
б) Отношение сторон ∆ ВОС и ∆ АОD равно 1/3, это их коэффициент подобия.
Отношение площадей подобных фигур равно квадрату их коэффициента подобия.
Т. к. не указано биссектрисы каких углов, то надо рассмотреть 2 случая: а) берем биссектрисы 2х острых углов, обозначим величину каждого острого угла как 2х и 2у. сумма острых углов прямоугольного тр. 90*, поэтому сумма половинок - 45* ( х + у = 45* ). Рассмотрим тр ОАВ ( О - пересечение биссектрис) : < AOB 180* - 79* = 101*, т. е. на 2 других приходиться 180* - 101 = 79*. а по условию - 45* . Получили противоречие. б) Берем биссектрисы прямого угла и одного из острых. Рассмотрим тр. АСО ( С - вершина прямого угла) : сумма углов х + 45* +101* = 180*, х = 34* = > 2x = 68* = > 2e = 90* - 68* = 22
Поскольку касательные перпендикулярны радиусу в точке касания, то треугольники ОАС и OBD прямоугольные. Рассмотрим их. Здесь: - АО=ВО как радиусы окружности; - <COA=<DOB как вертикальные углы. Используем один из признаков равенства прямоугольных треугольников: если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. Значит, в равных треугольниках ОАС и OBD равны и их гипотенузы. ОС=OD.
а) В треугольниках ВОС и АОD вертикальные углы при О равны. ОВ:ОD=6:18=1/3;
СО:ОС=5:15=1/3 ⇒ Сходственные стороны ∆ ВОС и ∆ АОD пропорциональны.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
Из подобия треугольников следует равенство их накрестлежащих углов. Из равенства накрестлежащих углов при пересечении прямых ВС и АD секущими АС и ВD следует параллельность сторон ВС и AD.
Две стороны четырехугольника АВСD параллельны - это признак трапеции. Доказано.
б) Отношение сторон ∆ ВОС и ∆ АОD равно 1/3, это их коэффициент подобия.
Отношение площадей подобных фигур равно квадрату их коэффициента подобия.
S ∆ ВОС:S ∆ АОD=k²=1/9