Пусть трапеция будет ABCD,AB=2,3 см; DC = 7,1 см; <C=45*. Проведем высоту BH, параллельную AD. Рассмотрим четырехугольник ABHD. Он - прямоугольник по признаку, так как <A,<D,<H - прямые. Имеем, что AB = DH = 2,3 см.Получаем, что НС = DC - AB = 7,1 - 2,3 = 4,8 (см) - из аксиомы 3.1. В треугольнике HBC <B = 45* из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 4,8 см ответ: 4,8 см
1) Пусть ABCD - прямоугольная трапеция, в которую вписана окружность. CF=4 см и FD=25 см. 2) Площадь трапеции можно найти по формуле: S=(AD+BC)*AB/2, где AD и BC - основания трапеции, AB - высота трапеции. 3) Можно использовать следующее свойство для прямоугольной трапеции, в которую вписана окружность: Если точка касания делит боковую сторону на отрезки m и n, то радиус вписанной окружности равен r=√(mn). Находим радиус вписанной окружности: r=√(4*25)=√100=10 (см). Значит, высота АВ=2r=2*10=20 (см). 4) Так как центр вписанной окружности является точкой пересечения биссектрис углов трапеции, то KC=CF=4 см, FD=DE=25 см. 5) AMOE=MBKO - квадраты со стороной, равной радиусу вписанной окружности, т.е. AE=BK=10 см. Таким образом, получаем, AD=10+25=35 (см), BC=10+4=14 (см). 6) Находим площадь трапеции: S=(AD+BC)*AB/2=(35+14)*20/2=49*10=490 (cм²).
Еще площадь прямоугольной трапеции, в которую вписана окружность можно найти по отдельной формуле: S=AD*BC (произведение оснований). S=35*14=490 (см²). ответ: 490 см².
В треугольнике HBC <B = 45* из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 4,8 см
ответ: 4,8 см