Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b²
Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его состоит в преобразовании квадратов, построенных на катетах, в равновеликие треугольники, составляющие вместе квадрат гипотенузы.
Рис. 10. ABC сдвигаем, как показано стрелкой, и он занимает положение KDN. Оставшаяся часть фигуры AKDCB равновелика площади квадрата AKDC – это параллелограмм AKNB.
Виды треугольников :
по размерам сторон :
разносторонние (треугольник, все стороны которого имеют разную длину.)
равнобедренные (это треугольник, у которого две стороны равны.)
равносторонние (это треугольник, у которого все три стороны равны.)
по размерам углов:
прямоугольные - это треугольник, у которого один угол прямой (то есть имеет градусную меру 90º).
остроугольные- это треугольник, все углы которого острые (то есть градусная мера каждого угла меньше 90º)
тупоугольные - это треугольник, у которого один угол — тупой (то есть имеет градусную меру больше 90º).
Средняя линия треугольника-это отрезок,соединяющий серидины сторон треугольника.
Объяснение:
Наверное, длина дуги равна не просто π, а π см.
Длина дуги вычисляется по формуле L=φR, где φ-угол в радианах, R-радиус окружности. Отсюда φ=L/R.
По условию, L= π см, R = 12 см. Тогда φ=π/12. Градусная мера угла равна π/12 / (2π) * 360° = 15°