Вариант решения Треугольники ВВ₁С и СС₁В - прямоугольные, т.к. высоты пересекаются с соответствующими сторонами под прямым углом. Вокруг этих треугольников можно описать одну окружность, т.к. гипотенуза ВС у них - общая, и радиус этой окружности будет одним и тем же для описанной вокруг каждого треугольника окружности. Т.е. точки С и В₁ будут лежать на одной и той же окружности. Углы ВВ₁С₁ И ВСС₁ - вписанные и опираются на одну и ту же дугу, стягиваемую хордой С₁В. Вписанные углы, опирающиеся на одну дугу - равны, ч.т.д.
Признаки равенства прямоугольных треугольников позволяют доказать равенство треугольников всего по двум парам элементов.
Признак равенства прямоугольных треугольников по двум катетам
Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и гипотенузе
Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства по гипотенузе и острому углу
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и острому углу
Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны
Треугольники ВВ₁С и СС₁В - прямоугольные, т.к. высоты пересекаются с соответствующими сторонами под прямым углом.
Вокруг этих треугольников можно описать одну окружность, т.к. гипотенуза ВС у них - общая, и радиус этой окружности будет одним и тем же для описанной вокруг каждого треугольника окружности.
Т.е. точки С и В₁ будут лежать на одной и той же окружности.
Углы ВВ₁С₁ И ВСС₁ - вписанные и опираются на одну и ту же дугу, стягиваемую хордой С₁В.
Вписанные углы, опирающиеся на одну дугу - равны, ч.т.д.