На крыше дома и на фонарном столбе находится по одному голубю.
лариса недалеко от дома рассыпала зерна.
оба голубя одновременно и с одинаковой скоростью отправились в полет и одновременно подлетели к зерну.
определите, на каком расстоянии от дома лариса рассыпала зерно, если известно, что высота дома равна 12м, высота фонаря 9м. фонарь находится от дома на расстоянии 21 м.
Для выпуклого многоугольника есть формула суммы его углов:
S=(180n - 360) или S=180°(n-2). (1)
В нашем случае сумма четырех углов данного многоугольника равна 4*120°=480°, следовательно, S > 480, так как условие подразумевает наличие хотя бы одного острого угла.
У выпуклого многоугольника каждый угол должен быть меньше 180°.
Тогда из формулы (1):
(180n-360 -480)/(n-4) < 180. Решаем это неравенство при условии, что
n - целое положительное число (количество сторон многоугольника) и
n > 4 (на 0 делить нельзя).
Вычтем из обеих частей неравенства 180:
(180n-360 -480)/(n-4) -180< 0. Или
(180n-840 - 180n +720)/(n-4)<0 => -120/(n-4) < 0
Итак, неравенство спроведлмво при любом n > 4, а так как n - целое число, то
ответ: число сторон может быть ЛЮБЫМ, равным или большим 5.
Проверим:
при n=4 сумма S = 180(4-2) = 360, что не соответствует условию.
При n = 5 имеем: S=180*3 = 540° и таким образом, остается острый угол, равный 540°-480°=60°.
При n = 6 сумма углов будет S = 180*4=720° и на два оставшихся угла остается 720°-480° = 240°, что соответствует условию, так как 240:2=120°.
При n = 10 сумма углов будет S = 180*8=1440° и на 6 оставшихся углов остается 1440°-480° = 960°, что соответствует условию, так как 960:6=160°.
При n = 100 сумма углов будет S = 180*98=17640° и на 96 оставшихся углов остается 17640°-480° = 17160°, что соответствует условию, так как 17160:96=178,75°.