A C По условию треугольник АВС равнобедренный, следовательно АВ=АС угол А=углу С Так как сумма углов=180°, а угол В=120°, то угол А+угол С=180°-120°=60°, тогда угол А=углу С=30°. Рассмотрим треугольник АНС, он прямоугольный ( высота проводится под углом 90° ) Угол С=30°, АС (гипотенуза)=12, тогда по свойству, против угла в 30° лежит катет, равный половине гипотенузы, АН=12:2=6 ответ: 6
Боковая поверхность пирамиды состоит из 4 равнобедренных треугольников, площади которых попарно равны Найдём высоту треугольника с основанием 6 см , по теореме Пифагора h=√(13²-3³)=√160см , а площадь этого треугольника 1/2·6·√160=3√160=12√10 см² и таких треугольников боковая поверхность содержит 2, значит их площадь 24√10 см² Найдём высоту треугольника с основанием 8, так же по теореме Пифагора H=√(13²-4²)=√153=3√17 см, его площадь равна 1/2·8·3√17=12√17см² и таких треугольника тоже 2 и их площадь равна 24√17 см² Sбок=24√10+24√17=24(√10+√17) см² ответ:24(√10+√17) см²
/\
/ \ H
/ / \
/ / \
/ / \
A C
По условию треугольник АВС равнобедренный, следовательно АВ=АС
угол А=углу С
Так как сумма углов=180°, а угол В=120°, то угол А+угол С=180°-120°=60°,
тогда угол А=углу С=30°.
Рассмотрим треугольник АНС, он прямоугольный ( высота проводится под углом 90° )
Угол С=30°, АС (гипотенуза)=12, тогда по свойству, против угла в 30° лежит катет, равный половине гипотенузы, АН=12:2=6
ответ: 6