1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
Допустим AK < BK (точка K ближе к вершине A) .
Обозначаем сторону основания правильной пирамиды
AB=BC =CD =DA =a ;
Пусть выполняется S(ABCD) =S(KPM) ⇔
a² =KM*PO/2 ⇔a² =KM*(1,5a)/2⇒KM= 4a/3 . AB= a< 4a/3 < a√2 =AC ,.т.е KM не ⊥ AD и KM не совпадает с диагоналями основания .
б)
Через центр основания O проведем EF ⊥ AD (тоже самое EF ⊥ CD), где
E ∈ [AD] , F ∈ [BC] . || K∈[AE] ||
ΔOEK = ΔOFM по второму признаку равенства треугольников (OE=OF=AB/2 ;∠OEK =∠OFM=90° и ∠KOE =∠MOF-вертикальные углы) .
MF=KE .
---
Sпол(PABMK) = S(ABMK) +S₁бок .
S(ABMK) =(AK +BM)/2 *AB ; AK +BM =(a/2 -KE) +(a/2 +MF)=a.
⇒S(ABMK) =(AK +BM)/2 *AB=a/2 *a =a²/2.
S₁бок =S(APK) +S(BPM)+S(APB) +S(KPM) =AK*h/2+BM*h/2+a*h/2+a²=
=(AK+BM)*h/2 +.a*h/2 +a² =a*h/2+a*h/2+a² =a*h+a² .
Sпол(PABMK)=a²/2+a*h+a²=3a²/2+a*h = (3a+2a*h)/2, где h_длина апофема .
ΔEPF h =EP=√((a/2)² +PO²) =√(a²/4 +9a²/4) =(a√10)/2 .
---
Sпол(PABCD) = S(ABMK) +S₂бок =a²+4*a*h/2 =a²+2*a*h ;
Sпол(PABMK)/ Sпол(PABCD) =(3a²+2a*h )/2 : (a²+2*a*h) =
=a²(3+√10)/2 : a² (1+√10) =(3+√10) / 2(1+√10).