1. прямая может касаться окр-ти, может пересекать окр-ть, может не касаться окр-ти.
2. касательная перпендикулярна к радиусу; отрезки касательных,проведенных из одной точки,не лежащей в и на окр-ти, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
3. 360 градусов.
4. градусная мера центр. угла равна дуге,которую образуют те же две точки, лежащие на окр-ти
5. вписанный угол равен половине деги или половине центр. угла.
6. 180 градусов всегда.
7. Если две хорды орокружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
8.Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилегажащим сторонам: x/y=a/b.
Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.
9. при пересечении серединных перпендикуляров образуется точка,которая является центром описанной окружности около данной фигуры.
10. точка пересеч. бисскетрис,медиан, высот и серединных перпендикуляров.
11. вписанной окр-ю в треугольник называется окружность,которая касается сторон данного треугольника.
12. точка пересеч. биссектрис.
13. только тогда,когда суммы противоположных сторон равны.
14. ответ выше^
15.S=1/2*r*Р,где Р - периметр
16.если все вершины многоуг-ка лежат на окр-ти, то окр-ть называется опписанной около данной фигуры.
17.точки пересеч. серединных перпендикуляров.
18. Если в выпуклом четырехугольнике,суммы противоположных сторон равны,то в этотчетырехугольник можно вписать окружность.
19. когда 4уг-к равнобедренный.
20. в середине гипотенузы.
і ми зустрічалися з різними рівняннями і будували їх графіки.
рівнянням фігури на площині в декартових координатах називається рівняння з двома змінними х і у, яке задовольняють координати будь-якої точки фігури, і навпаки: будь-які два числа, які задовольняють це рівняння, є координатами деякої точки цієї фігури.
яке ж рівняння має коло?
для того щоб скласти рівняння кола, згадаємо його властивість, що міститься в означенні кола: усі точки кола розміщені в одній площині з його центром і однаково від нього віддалені.
нехай центр кола м(а; b), а радіус кола r (рис. 140).
позначимо на колі будь-яку точку а (х; у). відстань від точки м до точки а дорівнює r, тобто am = r, але за формулою відстані між двома точками маємо ам2 = (х – а)2 + (y – b)2, або (x – a)2 + (y – b)2 = r2. (1)
координати будь-якої точки цього кола задовольняють рівняння (1). правильно і те, що будь-яка точка, координати якої задовольняють рівняння (1), належить колу.
отже, (x – a)2 + (y – b)2 = r2 — рівняння кола. якщо центр кола (рис. 141) лежить у початку координат, то воно має рівняння х2 + у2 = r2.
розглянемо рівняння (1), у якому х і у — змінні координати точок кола, а числа а і b — відповідно абсциса і ордината центра, r — радіус кола. отже, щоб записати рівняння кола, треба запам'ятати цю формулу і знати координати центра і радіус.
наприклад, нехай m(-1; 2), a r = 2, тоді рівняння кола (x + 1)2 + (y – 2)2 = 4.
виконання вправ
1) які з точок: а(1; 2), в(3; 4), с(-4; 3), d(0; 5), f(5; -1) —лежать на колі, рівняння якого х2 + у2 = 25? 2) запишіть рівняння кола радіуса 1, а координати центра:а) (1; 1);
б) (-1; 1);
в) (1; -1);
г) (-1; -1)
3) укажіть координати центра і радіус кола, яке задане рівнянням:a) (x – 1)2 + y2 = 9;
б) (x + 1)2 + (у + 3)2 = 1;
в) x2 + (y + 1)2 = 2;
г) (x + 1)2 + (y + 2)2 = 7.
4) знайдіть на колі х2 + у2 = 100 точки:а) з абсцисою 6;
б) з ординатою 8.
iv. закріплення й усвідомлення нового матеріалурозв'язування
1. дано точки а(2; 1), в(-2; 5). складіть рівняння кола, діаметром якого є відрізок ав.2. дано точки а(-1; -1) і с(-4; 3). складіть рівняння кола:а) з центром у точці а і яке проходить через точку с;
б) з центром у точці с і яке проходить через точку а.
3. знайдіть на осі ох центр кола, яке проходить через точку а(1; 4) і має радіус 5.4. складіть рівняння кола з центром (1; 2), яке дотикається до осі ох.5. складіть рівняння кола з центром (-3; -4), яке проходить через початок координат.6. доведіть, що відрізок ав, кінці якого а(2; -5) і в(5; -2) є хордою кола (х - 5)2 +(у + 5)2 = 9.7. чи перетинає коло (х + 4)2 + (у – 1)2 = 20 вісь оу? якщо перетинає, то в яких точках?
v. є завдання
вивчити рівняння кола та розв'язати і.
1. коло задане рівнянням (х – 1)2 + (у + 3)2 =10. чи проходить це коло через початок координат? 2. чи перетинає коло (х – 3)2 + (у + 5)2 = 26 вісь ох? якщо перетинає, то знайдіть точки перетину з віссю ох.3. знайдіть рівняння кола, діаметром якого є відрізок ав, якщо а(8; 5), в(2; -3).
vi. підбиття підсумків уроку
завдання класу
1. запишіть рівняння кола.2. знайдіть координати центра і довжини радіусів кіл, зображених на рис. 142. запишіть рівняння цих кіл.
ответ:30,90
Объяснение:Пусть меньший угол будет равен x, тогда больший равен 3x , 3x+x=120, значит x=30(меньший угол) , а второй угол (больший) равен 3x=90