М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ХацуноМико
ХацуноМико
23.06.2022 19:02 •  Геометрия

Может ли прямоугольный треугольник иметь стороны равные:
1) а = 12, b = 35, с = 37; 2) а = 11, b = 20, с = 25; 3) а= 18, b = 24,
с= 30; 4) а = 9, b = 12, с = 15? в каждом случае обоснуйте ответ.

👇
Ответ:
Mirskaya
Mirskaya
23.06.2022

1-может

2-не может

3-может

4-может

Объяснение:

Теорема Пифагора гласит, что в прямоугольном треугольнике с²=а²+в²

1) 37²=35²+12² 1369=1225+144

2) 25²=20²+11² 625=400+121 не правильно

3) 30²=24²+18² 900=576+324

4) 15²=12²+9² 225=144+81

4,4(33 оценок)
Открыть все ответы
Ответ:
W1LDOR
W1LDOR
23.06.2022
Хорошо, сведем задачу к нахождению диагонали трапеции т.к.  есть формула  S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3.
Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC  рассмотри треугольник ВОС:
угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) 
далее возьмем прямоугольный треугольник АНС где АН- высота:
угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30
тогда угол НАС равен
180-90-30=60
АН=2
найдем сторону НС:
по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3=
2 корня из 3
окей, далее найдем АС она же является диагональю трапеции:
АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4
готово, осталось посчитать:
S = АС^2 /2 * sin 60=  8* корень из 3 /2 = 4 корня из 3 см в квадрате
4,6(15 оценок)
Ответ:
Krisitnka
Krisitnka
23.06.2022
Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: \triangle CDE с прямым углом \angle C = 90^{\circ}, EF — биссектриса \angle E, CF = 13, FG — искомый отрезок.
==========
Решение:
Докажем, что \triangle CEF = \triangle EFG.
1) Так как EF — биссектриса, то \angle GEF = \angle CEF (биссектриса EF делит \angle E на два равные угла).
2) \angle C =\angle FGE = 90^{\circ} (это следует из условия: так как \triangle CDE прямоугольный, то и \angle C = 90^{\circ}; так как FG — расстояние от F до DE, то \angle FGE = 90^{\circ}).
3) Так как \angle C =\angle FGE и \angle GEF = \angle CEF, то и третий угол первого треугольника равен третьему углу второго треугольника: \angle GFE = \angle EFC. Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
\angle C + \angle CFE + \angle CEF = 180^{\circ} \\ 
\angle FGE + \angle GEF + \angle GFE = 180^{\circ}
Отсюда:
\angle CFE = 180^{\circ} - (\angle C + \angle CEF)\\ 
\angle GFE = 180^{\circ} - (\angle FGE + \angle GEF)
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит \angle CFE = \angle GFE.

3) Сторона EF является для обоих треугольников общей.
Собранных сведений достаточно, чтобы заключить, что \triangle CEF = \triangle EFG (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам (EF — сторона, а \angle GEF = \angle CEF \,\,\,\, \angle GFE = \angle EFC — два прилежащих угла)).
Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне FG соответствует CF, тогда:
FG = CF = 13
ответ: 13. 
=========
ответ можно проверить, геометрически (линейкой) измерив искомый отрезок FG. Смотрите второй рисунок.

Впрямоугольном треугольнике cde с прямым углом с проведена биссектриса ef,причем fc=13 см. найдите р
Впрямоугольном треугольнике cde с прямым углом с проведена биссектриса ef,причем fc=13 см. найдите р
4,6(21 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ