Есть аксиома такая, если прямая параллельна одной из двух параллельных прямых, тогда она параллельна и второй.
Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.
Изи
Объяснение:
Задача1:
1)угол MOK(центральный)=дуге MK=78°
2)угол ONK(вписаный)= половине дуги MK=78°:2=39°
3)угол NOK( | радиусу):(по теореме о касательных)
=>(следовательно)=90°
угол x: угол ONK+угол NOK+угол x=180°
( переделаем под угол формулу):
Угол х=180°-(39°+90°)=180°-129°=51°
Задача2:
НЕ ЗНАЮ(((
ПОЯСНЕНИЕ ОБЯЗАТЕЛЬНО ПРОЧИТАЙ,ЧТОБЫ В ДАЛЬНЕЙШЕМ ПОНИМАТЬ,ЧТО Я ПИШУ,ТАК КАК ВРЕМЯ ДЕНЬГИ, ТО:
ВПИСАННЫЙ УГОЛ-В
ЦЕНТРАЛЬНЫЙ УГОЛ0-Ц
РАДИУС-Р
Диаметр-Д
Дуга-д
Угол-У
Половина- п
Известны дуги сумма дуг =360°
=> д KM+д ML+д KL=360°
=> д KL=360°-(д KM+д ML)=360°-(77°+143°)=360°-220°=140°
У M(ВУ:=П д)=140°÷2=70°
Задача10:
Не знаю чего-то не могу увидеть вижу только:
MN-Д
У MKN=90 опирается на Д и по теореме касательных тоже