Треугольники АМВ и CMD подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого треугольника. В нашем случае: <ABD=<BDC как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей BD <BAC=<ACD как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей АС Для подобных треугольников можно записать: DC:AB=MC:MA Пусть МС будет х, тогда МА будет 25-х. Запишем отношение сторон в виде: 24:16=x:(25-x) 24(25-x)=16x 600-24x=16x 40x=600 x=15 МС=15 см
1) Пусть a и b - два данных вектора. Если вектор р представлен в виде p=xa+yb, где х и у -некоторые числа, то говорят, что вектор р разложен по векторам a и b. Числа х и у называются коэффициентами разложения.
2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат. Для координат векторов справедливы следующие свойства: 1. Каждая координата суммы векторов равна сумме соответствующих координат. 2. Каждая координата разности векторов равна разности соответствующих координат. 3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. 4. Каждая координата вектора равна разности соответствующих координат его конца и начала.
<ABD=<BDC как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей BD
<BAC=<ACD как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей АС
Для подобных треугольников можно записать:
DC:AB=MC:MA
Пусть МС будет х, тогда МА будет 25-х. Запишем отношение сторон в виде:
24:16=x:(25-x)
24(25-x)=16x
600-24x=16x
40x=600
x=15
МС=15 см