Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
Опускаем Высоту СН на АВ. СН = sin В * 3 корня из 2 = sin 30 * 3корня из 2 = 0,5*3 корня из 2 = 1,5 корня из 2 НВ в квадрате = (3 корня из 2) в квадрате - (1,5 корня из 2)в квадрате = 9*2 - 9/2= 13,5 НВ = корень из 13,5 = 3 корня из 1,5 АН = СН= 1,5 корня из 2 так как треугольник равнобедренный (углы при основании АС равны 45). АВ = АН + НВ = 1,5 корня из 2 + 3 корня из 1,5 АС = корень из (АН в квадрате + СН в квадрате) = корень из (4,5+4,5)=3
ОТВЕТ угол А = 45 АВ= 1,5 корня из 2 + 3 корня из 1,5 АС=3
|a+b| = √585 ≈ 24,19 ед.
|a-b| = 39 ед.
Объяснение:
В параллелограмме, построенном на векторах а и b, диагонали равны сумме и разности этих векторов (по правилам сложения и разности). Тогдв
Координаты суммы векторов:
(a+b) = (xa+xb;ya+yb;za+zb) = {-4;20;-13}.
Модуль (длина вектора):
|a+b| = √((-4)²+20²+(-13)²) = √585 ≈ 24,19 ед.
Координаты разности векторов :
(a-b)=(xa-xb;ya-yb;za-zb) = {34;-14;13}.
Модуль (длина вектора):
|a-b| = √(34²+(-14)²+13²) = √1521 ≈ 39 ед.