М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nawrik34digma
Nawrik34digma
07.02.2022 04:38 •  Геометрия

завтра уже сдаем
дано:
ав = вс
ве перпендикулярна ад
сд перпендикулярна ад
доказать sacd = 4sabe
подобие треугольников мы еще не проходили

👇
Ответ:
Даниад
Даниад
07.02.2022
Добрый день! Конечно, я готов ответить на ваш вопрос и дать вам максимально подробное объяснение.

Дано: AB = VC (1), VE перпендикулярна AD (2), SD перпендикулярна AD (3)
Нам нужно доказать, что площадь треугольника SADC равна 4 площади треугольника SABE.

Доказательство:

1. По условию, VE перпендикулярна AD. Также, SD перпендикулярна AD. Значит, вершина S лежит на отрезке VE и на отрезке SD, то есть S - это точка пересечения отрезков VE и SD.

2. По условию, AB = VC. Так как AB и VC - это диагонали параллелограмма, то они равны по длине. Значит, треугольник ABC равен треугольнику VBC по двум сторонам и углу между ними.

3. Рассмотрим треугольник ABD. Так как VE перпендикулярна AD, то угол BAE прямой. Значит, треугольник ABE - прямоугольный. Также, VE = AD (по условию) и AB = VC (по условию). Исходя из этих равенств и прямого угла между AB и VE, треугольник ABE равен треугольнику ADC по одной стороне и двум острым углам.

4. Заметим, что треугольник ABE подобен треугольнику SAE, так как у них одинаковые углы BAE и SAE (по построению). Значит, отношение площадей треугольников ABE и SAE равно квадрату отношения длин соответствующих сторон (так как площадь прямоугольного треугольника зависит от произведения его катетов). Из равенства AB/SA = EA/SE (по подобию) получаем: площадь ABE / площадь SAE = (AB/SA)^2.

5. Отношение сторон AB/SA можно выразить через отношение площадей треугольников SAB и SAE, так как треугольники лежат в том же плоскости и имеют общую высоту. Исходя из этого, AB/SA = sqrt(площадь SAB / площадь SAE) (корень из отношения площадей).

6. Заметим, что треугольник ACD - это противоположная сторона параллелограмма ABCV, так как AD - это диагональ параллелограмма, которая делит его на два равных треугольника. Значит, площадь треугольника ADC равна половине площади параллелограмма ABCV. Обозначим площадь параллелограмма ABCV как S (здесь S - это площадь параллелограмма, а не треугольника).

7. Из равенства SAB = SAE * (AB/SA)^2 (пункт 4 и 5) и пункта 6 следует, что площадь ABE = S * (AB/SA)^2 / 4.

8. Заметим, что SAD - это треугольник, который получается из треугольника ABC путем отражения относительно AD. Поэтому площадь треугольника SAD равна площади треугольника ABC.

9. Из равенства площади ABE (пункт 7) и пункта 8 следует, что площадь SAD = S * (AB/SA)^2 / 4.

10. Итак, мы доказали, что площадь треугольника SAD равна площади ABE, умноженной на S/4.

11. Заметим, что треугольник SAB подобен треугольнику SAD, так как у них одинаковые углы. Значит, отношение площадей треугольников SAB и SAD равно квадрату отношения длин соответствующих сторон (по тому же принципу, что и в пункте 4).

12. Отношение сторон SA(SAD) / SA(SAB) можно выразить через отношение площадей треугольников SAD и SAB, так как треугольники лежат в том же плоскости и имеют общую высоту. Исходя из этого, SA(SAD) / SA(SAB) = sqrt(площадь SAD / площадь SAB) (корень из отношения площадей).

13. Заметим, что площадь SAB = S * (AB/SA)^2 / 4 (пункт 7) и пункт 10 следует, что площадь SAD = S * (AB/SA)^2 / 4.

14. Из равенства площадей SAB = SAD * (SA(SAD) / SA(SAB))^2 (пункт 11 и 12) и пункта 13 следует, что площадь SAB = 4 * площадь SAD.

Таким образом, мы доказали, что площадь треугольника SADC равна 4 площади треугольника SABE.
4,7(40 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ