Центры вписанных в углы данной равнобокой трапеции равноудалены от сторон данной трапеции на 1 (радиус). соединив центры, мы имеем меньшую трапецию, стороны которой параллельны сторонам данной нам трапеции, то есть имеем подобные трапеции. Найдем высоту данной нам трапеции. Половина азности оснований (24-12):2 =6 - это катет бокового треугольника в трапеции, гипотенуза равна 10. Значит высота равна √(100-36)=8.
Тогда высота новой подобной трапеции равна 6 (8-1-1). Коэффициент подобия, следовательно, равен 8/6 = 4/3.
Площадь данной нам трапеции равна полусумме оснований, умноженную на высоту, то есть (12+24):2*8=144. Тогда площадь новой трапеции равна (144*3):4 = 108.
2)Рассмотрим треугольник BCH.Он тоже прямоугольный,с углами 30,60,90(угол С равен 90 т.к СН высота,угол B равен 60 по условию).В нём угол С,равен 30 градусам.Напртив него лежит катет НВ,равный половине гипотенузы ВС,т.е равный 46\2=23
3)Чтобы найти ВН,нужно из АВ вычесть АН. ВН=92-23=69
ответ ВН=69