Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
Начертим треугольник ABC.C=90°.По условию острый угол равен 45°-> второй угол будет тоже 45°.Следовательно AC=CB.. Рассмотрим треугольник ACH.угол А=45°,угол AHC=90(высота же),уголс ACH=45°. Из чего следует,что CH=AH=9,тоже самое проделываем с треугольником CHB.AH=HB=9=>AB=18. Найдём катеты,которые равны,т.е. АВ^2=AC^2+CB^2,пусть AC=x=CB,=> AB^2=2х^2.18^2=2х^2.324=2x^2,x=корень из 162,S(прямоугольное.треугольника)=1/2произведений катетов=>S=1/2AC*CB=(корень из 162*корень из 162)/2=162/2=81
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D
По теореме Пифагора DC₁²=6²+8²=100
DC₁=10
РК- средняя линия треугольника DCC₁
PK=5
PT|| AD и PT || ВС
РТ=4
AD⊥CD ⇒ РТ⊥СD
AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК
РТ⊥ РК
Аналогично, МТ ⊥МК
Сечение представляет собой прямоугольник
Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18