Решение: Расстояние от самой высокой точки фонаря до самой крайней точки тени человека представляет собой гипотенузу. Соответственно, расстояние от фонаря до конца тени и длина фонаря – это катеты того же прямоугольного треугольника. Угол между землей и фонарем равен 90°. Найдем катет треугольника: 16 + 9 = 25 (м). Чтобы найти высоту фонаря, составим пропорцию для подобных треугольников: 9/25 = 1,8/х. Здесь х – это высота фонаря. Она относится к росту человека так, как относится длина тени к расстоянию от фонаря до конца тени. х = (25 * 1,8) /9 = 45/9 = 5 (м). ОТВЕТ: высота фонаря равна 5 м.
Объём пирамиды=1/3*площадь основани*высота пирамиды. основание - правильный треугольник со стороной 6 см, значит 1/4корень из 3*сторону в квадрате=1/4корень из 3*6 в квадрате=9корен из 3. высота пирамиды. если её провести к высоте основания, то получиться прямой треугольник со стороной 60 градусов у основания и 30 - у вершины. Сторона против угла в 60 градусов=половине гипотенузы т. е. гипотенуза - боковое ребро, следовательно 6/2 = 3. Высота пирамиды - это катет этого прямого треугольника = 3. площадь = 1/3*9корень из 3*3=9корень из 3
Угол между землей и фонарем равен 90°.
Найдем катет треугольника:
16 + 9 = 25 (м).
Чтобы найти высоту фонаря, составим пропорцию для подобных треугольников:
9/25 = 1,8/х.
Здесь х – это высота фонаря. Она относится к росту человека так, как относится длина тени к расстоянию от фонаря до конца тени.
х = (25 * 1,8) /9 = 45/9 = 5 (м).
ОТВЕТ: высота фонаря равна 5 м.