Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Это же элементарно! Обозначим углы ромба буквами A;B;C;D Есть такое правило, что диагонали ромба точкой пересечения делятся попалам а все стороны равны, следовательно рассмотрим треугольник ABO: AB=30см BO=15 см т. к половина диагонали. И получается прямоугольный треугольник ABO По теореме пифагора ищим сторону AO 30^2=15^2+x Считаем и получаем x Х у нас будет 1/2 от второй диагонали а значит вторая диагональ равна в 2 раза больше. Ну а площадь ромба равна 1/2 произведения диагоналей а тоесть 30*2x*1/2 удачи)
5 номер
Угол ABC=90 Гадусов по усл.
Угол BCD=64 градуса по усл
Сумма углов треуг.)=180
Угол DAB=ABC-BCD=180-(90+64)=26*