1) BC=AB-AC (потому что у них общее начало в точке а,и открезок АВ больше чем АС)ВС=9,2-2,4=6,8(см)и точка С лежит между точками А и В 2) Углы, которые образовываются при пересечении двух прямых - смежные, их сумма равна 180. Обозначив меньший угол за x получим уравнение:4x+x=1805x=180x=36Это меньший угол. А больший равен 36*4=144 3) Если с- биссектриса угла ав, то угол ас=углу св. Но d делит угол ас пополам. Каждая половина равна 20 градусов, значит весь угол ас равен 40. Но ас=св, поэтому имеем, угол bd = 20+40=60 градусов. 4)Если с- биссектриса угла ав, то угол ас=углу св. Но d делит угол ас пополам. Каждая половина равна 20 градусов, значит весь угол ас равен 40. Но ас=св, поэтому имеем, угол bd = 20+40=60 градусов.
Пусть а=7, b=6 - стороны параллелограмма, обозначим диагональ d₁=x, тогда d₂=16-x Применяем формулу: сумма квадратов всех сторон параллелограмма равна сумме квадратов диагоналей.
2·а²+2·b²=d₁²+d₂² 2·7² + 2· 6²=х²+(16-х)² решаем квадратное уравнение: 98+72=х²+256-32х+х², х²-16х+43=0, D=b²-4ac=16²-4·43=256-172=84 x₁=8- √21 x₂=8+√21 если d₁=8-√21, тогда d₂=16-(8-√21)=8+√21 если d₁=8+√21, тогда d₂=16-(8+√21)=8-√21
Меньшая диагональ 8-√21, найдем косинус острого угла по теореме косинусов:
(8-√21)²=6²+7²-2·6·7·сosα
cosα=(36+49-64-21+16√21) / 84=4√21/21=4/√21 тогда sin α=√(1-(4/√21)²)=√(1-(16/21))=√(5/21) h=6·sinα=6√(5/21)
2) Углы, которые образовываются при пересечении двух прямых - смежные, их сумма равна 180. Обозначив меньший угол за x получим уравнение:4x+x=1805x=180x=36Это меньший угол. А больший равен 36*4=144
3) Если с- биссектриса угла ав, то угол ас=углу св. Но d делит угол ас пополам. Каждая половина равна 20 градусов, значит весь угол ас равен 40. Но ас=св, поэтому имеем, угол bd = 20+40=60 градусов.
4)Если с- биссектриса угла ав, то угол ас=углу св. Но d делит угол ас пополам. Каждая половина равна 20 градусов, значит весь угол ас равен 40. Но ас=св, поэтому имеем, угол bd = 20+40=60 градусов.