a) 10.
Объяснение:
Поскольку варианты ответов - скалярные величины, читаем вопрос условия так: " Найти скалярное произведение векторов АВ и EF".
Отметим координаты точек в соответствии с данным рисунком:
A(3;0;0), B(0;2;4), C(0;5;4) и D(3;7;0). Тогда координаты точек Е и F найдем, как координаты середин отрезков АВ и CD.
Эти координаты - полусуммы соответствующих координат начала и конца отрезков, то есть
Xe = (3+0)/2 =1,5; Ye = (0+2)/2 = 1 и Ze = (0+4)/2 =2.
Xf = (0+3)/2 =1,5; Yf = (5+7)/2 = 6 и Zf = (4+0)/2 = 2.
Координаты векторов АВ и EF как разность соответствующих координат конца и начала векторов:
АВ{(0-3);(2-0);(4-0)} = {-3;2;4} и соответственно EF{0;5;0}.
Скалярное произведение векторов - это сумма произведений их соответствующих координат:
АВ*EF = -3*0 + 2*5 + 4*0 = 10.
Объяснение:
Определение
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна каждой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Теорема 1
ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.
Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Доказательство:
Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда прямая а проходит через точку А пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости .
Проведем произвольную прямую х через точку А в плоскости и покажем, что она перпендикулярна прямой а. Проведем в плоскости произвольную прямую, не проходящую через точку А и пересекающую прямые b, c и х. Пусть точками пересечения будут В, С и Х.
Отложим на прямой а от точки А в разные стороны равные отрезки АА1 и АА2. Треугольник А1СА2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА1=АА2). по той же причине треугольник А1ВА2 тоже равнобедренный. Следовательно, треугольники А1ВС и А2ВС равны по трем сторонам.
Из равенства треугольников А1ВС и А2ВС следует равенство углов А1ВХ и А2ВХ и, следовательно равенство треугольников А1ВХ и А2ВХ по двум сторонам и углу между ними. Из равенства сторон А1Х и А2Х этих треугольников заключаем, что треугольник А1ХА2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямая а перпендикулярна плоскости . Теорема доказана.