Обозначим через х длину меньшего основания данной трапеции.
Согласно условию задачи, одно основание данной трапеции на 4 см больше другого, следовательно, длина большего основания данной трапеции составляет х + 4.
Также известно, что длина средней линии данной трапеции равна 8 см
Посколькуо в любой трапеции длина средней линии трапеции равна полусумме длин оснований этой трапеции, можем составить следующее уравнение
Объяснение:
(х + х + 4) / 2 = 8.
Решая данное уравнение, получаем:
2х + 4 = 8 * 2;
2х + 4 = 16;
2х = 16 - 4;
2х = 12;
х = 12 / 2;
х = 6 см.
Находим длину большего основания:
х + 4 = 6 + 4 = 10 см.
ответ: длины основании данной трапеции равны 6 см и 10 см.
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12
Найдем площадь:
S=
ответ:54