Итак, нам нужно найти угол между прямой SA и (SBD)?
Давай произведем для начало описание самой задачи(что в ней вообще происходит и какой именно угол нам необходимо найти.
Пусть точка О-является центром основания правильного 4-ехугольника ABCD(квадрата), точка K-середина ребра BS
ΔSOK-является прямоугольным, SO⊥OK,OK⊥(SBD) , т.к OK⊥BC, а BC⊂(SBD),SA⊥(ABCD),SA⊥SC.
Итак, мы выяснили, что SA⊥SC,CK⊥(SBD )⇒ ∠SCK-искомый линейный угол
OK=1/2AB=1/2*1=0,5
SK-высота ΔSBC,то есть SK=√3/2(по формуле равностороннего треугольника)
cos∠SKC=OK/SB=0,5/(√3/2)=1/√3=√3/3
α=arccos√3/3 или
sin∠SKC=SC/KC=√1/3
α=arcsin√1/3
ответ: треугольник не существует.
Объяснение:
МК - серединный перпендикуляр к стороне АВ.
Все точки серединного перпендикуляра к отрезку равноудалены от концов отрезка, значит
АК = ВК.
Pbkc = BC + KC + ВК
50 = 11 + KC + ВК
KC + ВК = 50 - 11 = 39 см
Учитывая, что АК = ВК,
КС + АК = 39 см,
а так как АС = КС + АК, то
АС = 39 см
К сожалению, в условии ошибка, так как в треугольнике каждая сторона должна быть меньше суммы двух других сторон, а по данным задачи
39 > 11 + 11
значит треугольник с такими сторонами не существует.