Прямая теорема:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Обратная теорема:
Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
Противоположная теорема:
Если при пересечении двух прямых секущей накрест лежащие углы не равны, то прямые не параллельны.
2.Прямая теорема:
Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
Обратная теорема:
Если две параллельные прямые пересечены секущей, то соответственные углы равны.
Противоположная теорема:
Если при пересечении двух прямых секущей соответственные углы не равны, то прямые не параллельны.
3.Прямая теорема:
Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
Обратная теорема:
Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Противоположная теорема:
Если при пересечении двух прямых секущей сумма односторонних углов не равна 180°, то прямые не параллельны.
ответ:
объяснение:
если две пересекающиеся прямые принадлежащие плоскостям будут параллельны, то и плоскости их содержащие тоже параллельны.
строим прямую мк параллельную вс1 и прямую кn параллельную прямой дс1
получаем, соединив точки m и n искомое сечение.