Докажем, что АВСD - трапеция с основаниями
Рассмотрим треугольники ВСО и АDO. Они подобны по второму признаку: угол ВОС=углу АОD (как вертикальные), АО/ОС=18/12=1,5 и ВО/OD=15/10=1,5.
У подобных фигур соответствующие углы равны, т.е. угол СВО=углу ОDA и угол ВСО=углу ОАD. В то же время углы СВО и ОDA являются внутренними накрест лежащими при секущей ВD и прямых ВС и AD, следовательно, ВС || AD.
Аналогично, углы ВСО и ОАD являются внутренними накрест лежащими при секущей АС и прямых ВС и AD, следовательно, ВС || AD.
По определению трапеция - четырёхугольник, у которого две противоположные стороны параллельны, а две другие непараллельны. Так как ВС || AD, то АВСD - трапеция, что и требовалось доказать.
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
Sосн=a^2=12×12=144(см^2)
Sбок=Pосн×h=12×4×5=240(см^2)
S=144+240=384(см^2)