Треугольник ABC с прямым углом A. Биссектриса BL делит сторону AC на отрезки AL=2.4 см и LC=2.6 см. Это так, потому что есть теорема, что биссектриса делит сторону на отрезки, отношение которых прямопропорционально отношениям длин сторон. Т.е. в данном случае BC/AB=LC/AC. А т.к. гипотенуза больше катета, то именно LC=2.6 см. Значит, BC/AB=2.6/2.4=13/12. Пусть AB=x, тогда BC=13/12x. По теореме Пифагора: BC^2=AC^2+AB^2=x^2 (умножить на) 169/144=x^2+(2.4+2.6)^2=x^2 (умножить на) 169/144+25. Решаем уравнение и получаем, что x^2=144. Значит, x=12=AB, значит, BC=13. Считаем периметр - AB+BC+CA=12+13+5=30см.
Так как А и О симметричны, значит, проведя линию ВС, точки А и О окажутся по разные стороны, но на одинаковом расстоянии от прямой ВС.
Так как радиус, проведенный в точку касания, образует с касательной угол 90°
А в четырехугольнике сумма углов равна 360°
У нас получилось 2 треугольника ВАС и ВОС
Проведем высоты ОН и АН к стороне ВС, высоты равны
Значит, по катету и гипотенузе равны треугольники ОСН и ВОН (т.к. треугольник равнобедренный, потому что ВО=ОС(радиусы одной окружности), а значит, ОН еще и медиана)
Так же и с треугольника ми ВАН и АНС
АВ =АС (как отрезки касательных), АН-медиана
Значит, треугольники ВАН и АНС равны по катету и гипотенузе
Рассматривая треугольники СНО и АНС можно сказать, что они так же равны по двум сторонам и углу между ними (НО=АН, НС-общая)
И так же с треугольниками ВАН и ВНО, они тоже равны по двум сторонам и углу между ними