3) площадь ромба равна половине произведения его диаганалей S=(10x12):2=60 диаганали ромба пересекаются под прямым углом и делят друг друга пополам Периметр сумма длин его сторон,длина сторон одинакова чтобы найти длину стороны нужно рассмотреть один образовавшийся треугольник при пересечении диаганалей,так как углы при точке пересечения диаганалей 90° то все образававшиеся треугольники прямые,а стороны ромба являются гипотенузами этиз тр-ков, а катеты равны 10:2=5cм и 12:2=6см такак диоганали делят друг друга пополам квадрат стороныромба=5 в квадрате +6 в квадрате =25+36=61 сторона ромба равна корень квадратный из 61(теорема пифагора) P=4 умножить на кореньиз 61
Ромб АВСД, ВД=12, АС=16, диагонали ромба в точке пересечения О делятся пополам и перпендикулярны друг другу. ВО=ВД/2=12/2=6, АО=АС/2=16/2=8, треугольник АВО прямоугольный, АВ=ВС=СД=АД=корень(АО в квадрате+ВО в квадрате)=корень(64+36)=10, периметр=АВ*4=10*4=40, площадь=1/2*АС*ВД=1/2*16*12=96Треугольник АВС, АВ=12, ВС=35, АС=37, если АС в квадрате > АВ в квадрате+ВС в квадрате - треугольник тупоугольник, если АС в квадрате < АВ в квадрате+ВС в квадрате - треугольник остроугольник, если АС в квадрате = АВ в квадрате+ВС в квадрате - треугольник прямоугольник, 1369 = 144+1225 - треугольник прямоугольный, уголВ=90, можно по другому - cosB=(АВ в квадрате+ВС в квадрате-АС в квадрате) / (2*АВ*ВС)=(144+1225-1369)/(2*12*35)=0/840 =0, cosB=0, что соответствует углу 90
Длина медианы треугольника выражается формулой
Ma=0,5*sqrt(2(b^2+c^2)-a^2
Пусть
a=25
b=25
c=14,
тогда
Ma=0,5*sqrt(2(625+196)-625)=0,5*sqrt(1017)=15,95
Mb=Ma=15,95
Mc=0,5*sqrt(2(625+625)-196)=0,5*sqrt( 2304)=24